小学数学需要记住的知识点还是比较多的,看到这些知识点,很多孩子都觉得枯燥,不愿意用心去记。所以孩子需要轻松、自由的课堂,在玩耍中教给孩子高效的学习方法。如果我们把一种新的、有趣的记忆方法教给孩子,孩子也会变得有兴趣,因为兴趣是最好的老师。 1、20以内进位加法 看大数,分小数,凑整十,加零头。 (掌握“凑十法”,提倡“递推法”。) 2、20以内退位减法 20以内退位减,口算方法和简单。 十位退一,个加补,又准又快写得数。 3、加法意义,竖式计算 两数合并用加法,加的结果叫做和。 数位对其从右起,逢十进一别忘记。 例:435+697= 4、减法的意义竖式计算 从大去小用减法,减的结果叫做差。 数位对齐从右起,不够减时前位拿。 例:756-569= 5、两位数乘法 两位数乘法并不难,计算过程有三点: 乘数个位要先算,再用十位乘一遍, 乘积末位是关键,要和十位来对端; 两次乘积相加完,层层计算记心间。 例:15×24= 6、两位数除法 除数两位看两位,两位不够除三位。 除到那位商那位,余数要比除数小, 然后再除下一位,试商方法要灵活, 掌握“四舍五入”法,还有“同商比较法”, 了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1) 例:84÷24= 7、混合运算 拿到式题认真看,先算乘除后加碱。 遇到括号要先算,运用规律要改变。 一些数据要记牢,技能技巧掌握好。 例:(13+24)×35÷25= 8、小数加减法 小数加减计算题,以点对准好对齐。 算法如同算整数,算毕把点往下移。 例:3.24+7.83= 9、小数乘法 小数乘小数,法则同整数。 定积小数位,因数共同凑。 例:0.45×2.5= 10、分数乘除法 分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。 11、正方体展开图 正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型: 1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。 2、231型中间一行3个作侧面,共3种基本图形。 3、222型中间两个面,只有1种基本图形。 4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。 12、和差问题已知两数的和与差,求这两个数 和加上差,越加越大; 除以2,便是大的; 和减去差,越减越小; 除以2,便是小的。 例:已知两数和是10,差是2,求这两个数。 按口诀,则大数=(10+2)÷2=6,小数=(10-2)÷2=4。 13、浓度问题 (1)加水稀释 加水先求糖,糖完求糖水。 糖水减糖水,便是加糖量。 例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克) (2)加糖浓化 加糖先求水,水完求糖水。 糖水减糖水,求出便解题。 例: 有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水 在20%浓度下应有多少糖水,17÷(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克) 14、路程问题 (1)相遇问题 相遇那一刻,路程全走过。 除以速度和,就把时间得。 例:甲 乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇? 相遇那一刻,路程全走过。即甲乙走过的路程 和恰好是两地的距离120千米。除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时) (2)追及问题 慢鸟要先飞,快的随后追。 先走的路程,除以速度差, 时间就求对。 例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。所以追上的时间为:6÷3=2(小时)。 15、差比问题(差倍问题) 我的比你多,倍数是因果。 分子实际差,分母倍数差。 商是一倍的, 乘以各自的倍数, 两数便可求得。 例:甲数比乙数大12,甲:乙=7:4,求两数。先求一倍的量,12÷(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。 16、工程问题 工程总量设为1, 1除以时间就是工作效率。 单独做时工作效率是自己的, 一齐做时工作效率是众人的效率和。 1减去已经做的便是没有做的, 没有做的除以工作效率就是结果。 例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]÷(1/6)=1(天) 17、植树问题 植树多少颗, 要问路如何? 直的减去1, 圆的是结果。 例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?路是直的。所以植树120÷4-1=29(颗)。 例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120÷4=30(颗)。 18、盈亏问题 全盈全亏,大的减去小的; 一盈一亏,盈亏加在一起。 除以分配的差, 结果就是分配的东西或者是人。 例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)÷(10-8)=8(人),相应桃子为8X10-9=71(个) 例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题。大的减去小的,则公式为:(680-200)÷(50-45)=96(人)则子弹为96X50+200=5000(发)。 19、年龄问题 岁差不会变,同时相加减。 岁数一改变,倍数也改变。 抓住这三点,一切都简单。 例 1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转 化为差比问题。26÷(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。 20、余数问题 余数有(N-1)个, 最小的是1,最大的是(N-1)。 周期性变化时, 不要看商, 只要看余。 例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟? 分 针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。 1980÷24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后 24-22=2个小时,即相当于时针向后拔了2小时。 即时针相当于是18-2=16(点)。
家有小活宝,大活宝来报到!
|