zhangjun  发表于 2012-6-15 10:21:12| 2823 次查看 | 7 条回复

众所周知,小升初要实现"笑胜出",孩子在重点中学的数学测验中脱颖而出是十分必要的。从三年级就开始学习的奥数积累到六年级,孩子做过无数的题目,见过无数的题型,但能反映在小升初那张试卷上的,无非也就那么几个知识点。而在这些知识点中,重要的无非也就是这么几个——"数、行、形、算"。

何谓"数、行、形、算",也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据统计清华附中近年来的这几大问题的考题占据全部了 80%左右,北师大附属实验中学,RH学校六年级等对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%.如何复习这四方面的内容呢?

对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

数论在数论学习中学生往往容易犯如下几个错误:

1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来"消化"所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:"奇数+奇数=偶数……"可是在做题的时候就想不到用。

3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

知识体系:

整除问题:

(1)数的整除的特征和性质 (小升初常考内容)

(2)位值原理的应用(用字母和数字混合表示多位数)

质数合数:

(1)质数、合数的概念和判断(2)分解质因数(重点)

约数倍数:

(1)最大公约最小公倍数(2)约数个数决定法则 (小升初常考内容)

余数问题:

(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)



家有小活宝,大活宝来报到!
欧阳城普  评论于  2012-6-15 10:29:16
支持一下.....
马婧怡  评论于  2012-6-15 10:29:30
我要攒钱
繁华男紫  评论于  2012-6-15 10:37:06
今日来过
彤彤宸  评论于  2012-6-15 10:45:07
已阅
树成鹏纯  评论于  2012-6-15 10:46:32
我来了我走了
bramble99  评论于  2012-6-15 11:10:55
楼主我来过啦。。。啦。。。
mjtp88  评论于  2012-6-15 11:14:20
我瞅瞅呢.....