zhangjun  发表于 2012-8-25 12:52:40| 3740 次查看 | 5 条回复

第十讲:数论之余数问题

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”

余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:

一、带余除法的定义及性质

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,

0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:

(1)当 时:我们称a可以被b整除,q称为a除以b的商或完全商

(2)当 时:我们称a不可以被b整除,q称为a除以b的商或不完全商

一个完美的带余除法讲解模型:

如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。

二、三大余数定理:

1.余数的加法定理

a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等

于4,即两个余数的和3+1.

当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.

2.余数的乘法定理

a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.

3.同余定理

六年级奥数-第十讲.数论之余数问题..doc (2 MB, 下载次数: 567)

家有小活宝,大活宝来报到!
xvhrm  评论于  2012-8-25 13:08:42
看贴回帖
xvhrm  评论于  2012-8-25 13:08:46
我是有素质的人
小麦一家  评论于  2012-8-25 13:30:02
看贴回帖
zmirt  评论于  2012-8-25 13:30:03
~~~~看过拿点分
alan  评论于  2013-2-20 13:35:13
好东西啊!留下
家有小活宝,大活宝来报到!